Copied to
clipboard

G = C92⋊C6order 486 = 2·35

1st semidirect product of C92 and C6 acting faithfully

metabelian, supersoluble, monomial

Aliases: C921C6, C9⋊D91C3, C92⋊C3⋊C2, He3⋊C3.1S3, C32.14(C32⋊C6), C3.2(He3.2S3), (C3×C9).27(C3×S3), SmallGroup(486,35)

Series: Derived Chief Lower central Upper central

C1C92 — C92⋊C6
C1C3C32C3×C9C92C92⋊C3 — C92⋊C6
C92 — C92⋊C6
C1

Generators and relations for C92⋊C6
 G = < a,b,c | a9=b9=c6=1, ab=ba, cac-1=a-1b-1, cbc-1=a3b-1 >

81C2
3C3
27C3
27S3
81C6
81S3
3C9
3C9
3C9
3C9
9C32
18C9
9C3⋊S3
27D9
27D9
27D9
27C3×S3
27D9
3C3×C9
3He3
63- 1+2
3C9⋊S3
9C32⋊C6
9C9⋊S3
2C3.He3
3He3.2S3

Character table of C92⋊C6

 class 123A3B3C3D6A6B9A9B9C9D9E9F9G9H9I9J9K9L9M9N
 size 18126272781816666666666665454
ρ11111111111111111111111    trivial
ρ21-11111-1-111111111111111    linear of order 2
ρ31111ζ3ζ32ζ3ζ32111111111111ζ3ζ32    linear of order 3
ρ41-111ζ32ζ3ζ6ζ65111111111111ζ32ζ3    linear of order 6
ρ51-111ζ3ζ32ζ65ζ6111111111111ζ3ζ32    linear of order 6
ρ61111ζ32ζ3ζ32ζ3111111111111ζ32ζ3    linear of order 3
ρ720222200-1-1-1-1-1-1-1222-1-1-1-1    orthogonal lifted from S3
ρ82022-1--3-1+-300-1-1-1-1-1-1-1222-1-1ζ6ζ65    complex lifted from C3×S3
ρ92022-1+-3-1--300-1-1-1-1-1-1-1222-1-1ζ65ζ6    complex lifted from C3×S3
ρ10606600000000000-3-3-30000    orthogonal lifted from C32⋊C6
ρ1160-3000009792-195+2ζ94-19594+29594-198+2ζ9-1989+2989-1ζ95+2ζ94929989492998+2ζ97949297+2ζ92-19792+200    orthogonal faithful
ρ1260-30000095+2ζ94-1989+2989-198+2ζ9-19792+29792-197+2ζ92-1989492998+2ζ979492ζ95+2ζ949299594+29594-100    orthogonal faithful
ρ1360-3000009594+2989-198+2ζ9-1989+29792-197+2ζ92-19792+2989492998+2ζ979492ζ95+2ζ949299594-195+2ζ94-100    orthogonal faithful
ρ1460-30000098+2ζ9-19792+29792-197+2ζ92-19594+29594-195+2ζ94-198+2ζ979492ζ95+2ζ949299894929989+2989-100    orthogonal faithful
ρ15606-30000ζ95+2ζ9492998949299894929989492998+2ζ97949298+2ζ97949298+2ζ979492000ζ95+2ζ94929ζ95+2ζ9492900    orthogonal lifted from He3.2S3
ρ16606-3000098+2ζ979492ζ95+2ζ94929ζ95+2ζ94929ζ95+2ζ9492998949299894929989492900098+2ζ97949298+2ζ97949200    orthogonal lifted from He3.2S3
ρ1760-30000097+2ζ92-19594+29594-195+2ζ94-1989+2989-198+2ζ9-1ζ95+2ζ94929989492998+2ζ9794929792+29792-100    orthogonal faithful
ρ1860-3000009594-198+2ζ9-1989+2989-197+2ζ92-19792+29792-1989492998+2ζ979492ζ95+2ζ9492995+2ζ94-19594+200    orthogonal faithful
ρ1960-300000989+29792-197+2ζ92-19792+29594-195+2ζ94-19594+298+2ζ979492ζ95+2ζ949299894929989-198+2ζ9-100    orthogonal faithful
ρ2060-300000989-197+2ζ92-19792+29792-195+2ζ94-19594+29594-198+2ζ979492ζ95+2ζ94929989492998+2ζ9-1989+200    orthogonal faithful
ρ21606-30000989492998+2ζ97949298+2ζ97949298+2ζ979492ζ95+2ζ94929ζ95+2ζ94929ζ95+2ζ949290009894929989492900    orthogonal lifted from He3.2S3
ρ2260-3000009792+29594-195+2ζ94-19594+2989-198+2ζ9-1989+2ζ95+2ζ94929989492998+2ζ9794929792-197+2ζ92-100    orthogonal faithful

Permutation representations of C92⋊C6
On 27 points - transitive group 27T172
Generators in S27
(1 2 3)(4 5 6)(7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)
(1 7 6 2 8 4 3 9 5)(10 17 15 13 11 18 16 14 12)(19 24 20 25 21 26 22 27 23)
(1 10 22)(2 16 19 3 13 25)(4 11 23 8 18 21)(5 17 20 7 12 24)(6 14 26 9 15 27)

G:=sub<Sym(27)| (1,2,3)(4,5,6)(7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27), (1,7,6,2,8,4,3,9,5)(10,17,15,13,11,18,16,14,12)(19,24,20,25,21,26,22,27,23), (1,10,22)(2,16,19,3,13,25)(4,11,23,8,18,21)(5,17,20,7,12,24)(6,14,26,9,15,27)>;

G:=Group( (1,2,3)(4,5,6)(7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27), (1,7,6,2,8,4,3,9,5)(10,17,15,13,11,18,16,14,12)(19,24,20,25,21,26,22,27,23), (1,10,22)(2,16,19,3,13,25)(4,11,23,8,18,21)(5,17,20,7,12,24)(6,14,26,9,15,27) );

G=PermutationGroup([[(1,2,3),(4,5,6),(7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27)], [(1,7,6,2,8,4,3,9,5),(10,17,15,13,11,18,16,14,12),(19,24,20,25,21,26,22,27,23)], [(1,10,22),(2,16,19,3,13,25),(4,11,23,8,18,21),(5,17,20,7,12,24),(6,14,26,9,15,27)]])

G:=TransitiveGroup(27,172);

Matrix representation of C92⋊C6 in GL6(𝔽19)

0180000
1180000
0071400
005200
000025
0000147
,
1770000
1250000
0017700
0012500
00001417
0000212
,
00001714
0000122
17140000
1220000
00171400
0012200

G:=sub<GL(6,GF(19))| [0,1,0,0,0,0,18,18,0,0,0,0,0,0,7,5,0,0,0,0,14,2,0,0,0,0,0,0,2,14,0,0,0,0,5,7],[17,12,0,0,0,0,7,5,0,0,0,0,0,0,17,12,0,0,0,0,7,5,0,0,0,0,0,0,14,2,0,0,0,0,17,12],[0,0,17,12,0,0,0,0,14,2,0,0,0,0,0,0,17,12,0,0,0,0,14,2,17,12,0,0,0,0,14,2,0,0,0,0] >;

C92⋊C6 in GAP, Magma, Sage, TeX

C_9^2\rtimes C_6
% in TeX

G:=Group("C9^2:C6");
// GroupNames label

G:=SmallGroup(486,35);
// by ID

G=gap.SmallGroup(486,35);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,1190,224,338,4755,873,453,3244,3250,11669]);
// Polycyclic

G:=Group<a,b,c|a^9=b^9=c^6=1,a*b=b*a,c*a*c^-1=a^-1*b^-1,c*b*c^-1=a^3*b^-1>;
// generators/relations

Export

Subgroup lattice of C92⋊C6 in TeX
Character table of C92⋊C6 in TeX

׿
×
𝔽